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Topological Field Theories Associated with Three-
Dimensional Seiberg± Witten Monopoles

YuÍ ji Ohta1,2

Received June 17, 1997

Three-dimensional topological field theories associated with the three-
dimensional version of Abelian and non-Abelian Seiberg±Witten monopoles
are presented. These three-dimension al monopole equations are obtained by a
dimensional reduction of the four-dimension al ones. The starting actions to be
considered are Gaussian types with random auxiliary fields. As the local gauge
symmetries with topological shifts are found to be first-stage-reducible, the
Batalin±Vilkovisky algorithm is suitable for quantization. Then the BRST
transformation rules are automatically obtained. Nontrivial observables associated
with Chern classes are obtained from the geometric sector and are found to
correspond to those of the topological field theory of Bogomol’ nyi monopoles.

1. INTRODUCTION

Topological field theories (Schwarz, 1978; Witten, 1988; Birmingham

et al., 1991; Thompson, 1993) are often used to study the topological nature

of manifolds. In particular, three- and four-dimensional topological field
theories are well developed. The best known three-dimensional topological

field theory is the Chern±Simons theory, whose partition function gives

the Ray±Singer torsion of three±manifolds (Schwarz, 1978), and the other

topological invariants can be obtained as gauge-invariant observables, i.e.,

Wilson loops. The correlation functions can be identified with knot or link
invariants, e.g., the Jones polynomial or its generalizations. On the other

hand, in four dimensions, the twisted N 5 2 supersymmetric Yang±Mills

theory developed by Witten (1988) also has the nature of topological field
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theory. This Yang±Mills theory can be interpreted as a Donaldson theory

(Donaldson, 1983) and the correlation functions are identified with Donaldson

polynomials which classify smooth structures of topological four-manifolds.

However, a new topological field theory on four-manifolds was discovered

in recent studies of the electric±magnetic duality of supersymmetric gauge

theory. The story of this development is as follows.

Seiberg and Witten (1994a, b) studied the electric±magnetic duality of

N 5 2 supersymmetric SU(2) Yang±Mills gauge theory (for reviews, see Di

Vecchia, 1996; Labastida, 1995; Intriligator and Seiberg, 1996; Thompson,

1995; Witten, 1995) by using a version of Montonen±Olive duality, and

obtained exact solutions. According to this result, the exact low-energy effec-

tive action can be determined by a certain elliptic curve with a parameter u

5 ^ tr f 2 & , where f is a complex scalar field in the adjoint representation of

the gauge group, describing the quantum moduli space. For large u, the theory

is weakly coupled and semiclassical, but at u 5 6 L 2 corresponding to the

strong-coupling regime, where L is the dynamically generated mass scale,

the elliptic curve becomes singular and the situation of the theory changes

drastically. At these singular points, magnetically charged particles become

massless. Witten showed that at u 5 6 L 2 the topological quantum field

theory was related to the moduli problem of counting the solutions of the

(Abelian) ª Seiberg±Witten monopole equationsº (Witten, 1994a) and it gave

a dual description for the SU(2) Donaldson theory. The particularly interesting

fact is that the partition function of this U(1) gauge theory produces a new

topological invariant (Kronheimer and Mrowka, 1994; Taubes, 1994; Witten,

1994a, b; Akbulut, 1995; Bradlow and Garcia-Prada, 1996; Donaldson, 1996).

The topological field theory of the Seiberg±Witten monopoles has been

discussed by several authors. Labastida and MarinÄ o (1995a), using the

Mathai±Quillen formalism (Mathai and Quillen, 1986; Atiyah and Jeffrey,

1990; Blau, 1993), found that the resulting action was equivalent to that of

the twisted N 5 2 supersymmetric Maxwell coupled with a twisted N 5 2

hypermultiplet. Furthermore, they generalized their results for non-Abelian

cases (Labastida and MarinÄ o, 1995b, c) and determined polynomial invariants

for the SU(2) case corresponding to a generalization of Witten (1994a, b) in the

Abelian case. In these studies, the topological field theories were formulated as

of Witten type. On the other hand, Hyun et al. (1995a, b) discussed a non-

Abelian topological field theory in view of twisting of N 5 2 supersymmetric

Yang±Mills coupled with N 5 2 matter and obtained similar polynomial

invariants. There are other approaches to obtaining the topological action; in

fact, Carey et al. (1997) derived the topological action as a BRST variation

of a certain gauge fermion, Gianvittorio et al. (1996, 1997) discussed in view

of a covariant gauge-fixing procedure.
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In three dimensions, a topological field theory of Bogomol’ nyi mono-

poles can be obtained from a dimensional reduction of Donaldson theory

(Baulieu and Grossman, 1988; Birmingham et al., 1989) and the partition
function of this theory gives the Casson invariant (Atiyah and Jeffrey, 1990).

However, the three- or two-dimensional topological field theory of Seiberg±

Witten monopoles does no seem to have been fully discussed, although

several authors point out its importance (Thompson, 1995; Olsen, 1996;

Carey et al., 1997). Carey et al. (1997) performed a dimensional reduction

of the Abelian Seiberg±Witten theory from four to three dimensions and
found the reduced topological action. They also found, in view of the Mathai±

Quillen formalism, that the partition function of this three-dimensional theory

can be interpreted as a Seiberg±Witten version of the Casson invariant of

three-manifolds.

In this paper, we discuss the topological quantum field theories associated

with the three-dimensional version of Abelian and non-Abelian Seiberg±
Witten monopoles, by applying Batalin±Vilkovisky quantization. In particu-

lar, we construct the topological actions, topological observables, and BRST

transformation rules. In Section 2, we briefly review the essence of topological

quantum field theories of both Witten type and Schwarz type. The reader

interested in the results of this paper may neglect this section. In Section 3,
the dimensional reduction of the Abelian and non-Abelian Seiberg±Witten

monopole equations is explicitly performed and the three-dimensional mono-

pole (3D monopole) equations are obtained. We also obtain quadratic actions

which reproduce these three-dimensional monopole equations as minimum.

In Section 4, we construct topological field theories of these three-dimensional

monopoles, taking the actions including random auxiliary fields as a starting
point. As their local gauge symmetries are classified as first-stage-reducible

with on-shell reducibility, the Batalin±Vilkovisky algorithm is suitable to

quantize these theories. Then we can automatically obtain the BRST transfor-

mation rules by construction. It is shown that the observables in the geometric

sector can be obtained in a standard fashion, but those in the matter sector

are found to be trivial. Our results for the Abelian case are consistent with
those of the dimensionally reduced version of the topological field theory of

four-dimensional Seiberg±Witten monopoles (Carey et al., 1997), while those

for the non-Abelian case are new results. It is interesting to compare our

results with those of the topological field theory of Bogomol’ nyi monopoles.

Section 5 is a summary, and we also mention some open problems.

Notations

We use the following notations, unless mentioned otherwise. Let X be

a compact orientable spin four±manifold with no boundary and let g m n be its
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Riemannian metric tensor with g 5 det g m n . We use x m as the local coordinates

on X. The g m are Dirac gamma matrices and s m n 5 [ g m , g n ]/2 with { g m ,

g n } 5 g m n (see also the Appendix). M is a Weyl fermion and M is the complex
conjugate of M. We suppress spinor indices. The Lie algebra g is defined by

[T a, T b] 5 ifabc T c, where T a is a generator normalized as tr T aT b 5 d ab. The

symbol fabc is the structure constant of g and is antisymmetric in its indices.

The Greek indices m , n , a , . . . run from 0 to 3. The Roman indices a,

b, c, . . . are used for the Lie algebra indices running from 1 to dim g, whereas

i, j, k, . . . are the indices for space coordinates. Space-time indices are raised
and lowered with g m n . The repeated indices are assumed to be summed. e m n r s

is an antisymmetric tensor with e 0123 5 1. We often use the abbreviation of

Roman indices as u 5 u aT a, etc., in order to suppress the summation over

Lie algebra indices.

2. QUICK TOUR OF TOPOLOGICAL FIELD THEORY

This section is devoted to a brief review of topological field theory. The

reader interested in the details should refer to Schwarz (1978), Witten (1988),

Birmingham et al. (1991), Thompson (1993), and Labastida (1995).

Let f be any field content. For a local symmetry of f , we can construct

a nilpotent BRST operator QB (Q2
B 5 0). The variation of any functional 2

of f is denoted by

d 2 5 {QB, 2} (2.1)

where the bracket { * , * } means a graded commutator, namely, if 2 is bosonic,

the bracket means a commutator [ * , * ], and otherwise it is an antibracket.

Then we can give the definition of topological field theory (Birmingham

et al., 1991).

Definition. A topological field theory consists of:

1. a collection of Grassmann graded fields f on an n-dimensional

Riemannian manifold X with a metric g;

2. a nilpotent Grassmann odd operator Q;

3. physical states to be Q-cohomology classes;

4. an energy-momentum tensor T a b which is Q-exact for some func-
tional V a b such that

T a b 5 {Q, V a b ( f , g)} (2.2)

In this definition, Q is often identified with QB and is in general indepen-

dent of the metric. There are several examples of topological field theories

which do not satisfy this definition, but this definition is useful in many cases.



Topological Field Theories Associated with 3D SW Monopoles 929

There are two broad types of topological field theories satisfying this

definition, Witten type (Witten, 1988) or Schwarz type (Schwarz, 1978) (there

are several nonstandard Schwarz-type theories, e.g., higher dimensional BF
theories, but here we do not consider such cases).

For the Witten-type theory, the quantum action Sq which comprises the

classical action, ghost, and gauge-fixing terms can be represented by Sq 5
{QB, V } for some function V of metric and fields and BRST charge QB.

Under the metric variation d g of the partition function Z, it is easy to see that

d g Z 5 # $ f e 2 Sq 1 2 1

2 # X

d nx ! g d g a b T a b 2
5 # $ f e 2 Sq{Q, x }

[ ^ {Q, x } & 5 0 (2.3)

where

x 5 2
1

2 # X

d nx ! g d g a b V a b (2.4)

The last equality in (2.3) follows from the BRST invariance of the vacuum

and means that Z is independent of the local structure of X, that is, Z is a
ª topological invariantº of X.

In general, for a Witten-type theory, QB can be constructed by the

introduction of a topological shift with other local gauge symmetry (Baulieu

and Singer, 1988; Brooks et al., 1988). For example, in order to obtain the

topological Yang±Mills theory on the four-manifold M 4, we introduce a shift

in the gauge transformation for the gauge field Aa
m such that d Aa

m 5 D m u a 1
e a

m , where D m is the covariant derivative, and u a and e a
m are the (Lie-algebra-

valued) usual gauge transformation parameter and topological shift parameter,

respectively. In order to see the role of this shift, let us consider the first

Pontrjagin class on M 4 given by

S 5
1

8 # M
4

e m n r s F a
m n F a

r s d 4x (2.5)

where F a
m n is the field strength of the gauge field. We can easily check the

invariance of (2.5) under the action of d . In this sense, (2.5) has a larger

symmetry than the usual (Yang±Mills) gauge symmetry. Taking this into
account, we can construct the topological Yang±Mills gauge theory (Baulieu

and Singer, 1988; Brooks et al., 1988; Gomis et al., 1995). We can also

consider similar ª topologicalº shifts for matter fields, as will be shown in

Section 4.
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In addition, in general, Witten-type topological field theory can be

obtained from the quantization of certain Langevin equations (Birmingham

et al., 1991). This approach has been used for the construction of several
topological field theories, e.g., supersymmetric quantum mechanics, topologi-

cal sigma models, or Donaldson theory (Labastida and Pernici, 1988; Bir-

mingham et al., 1991) [we will use this approach for the N 5 4 theory (Vafa

and Witten, 1994) elsewhere (Ohta, n.d.)].

On the other hand, Schwarz-type theory (Schwarz, 1978) begins with

any metric-independent classical action Sc as a starting point, but Sc is assumed
not to be a total derivative. Then the quantum action (up to gauge-fixing

term) can be written as

Sq 5 Sc 1 {Q, V( f , g)} (2.6)

for some function V. For this quantum action, we can easily check the

topological nature of the partition function, but note that the energy-momen-

tum tensor contributes only from the second term in (2.6). One of the differ-

ences between Witten-type and Schwarz-type theories can be seen in this

point. Namely, the energy-momentum tensor of the classical action for
Schwarz-type theory vanishes because it is derived as a result of metric

variation.

Finally, we comment on the local symmetry of Schwarz-type theory.

Let us consider the Chern±Simons theory as an example. The classical action

SCS 5 # M 3
d 3x 1 A Ù dA 1

2

3
A Ù A Ù A 2 (2.7)

is a topological invariant which gives the second Chern class of the three-

manifold M 3. As is easy to find, SCS is not invariant under the topological

gauge transformations, although it is (Yang±Mills) gauge-invariant. Therefore
the quantization proceeds by the standard BRST method. This is a general

feature of Schwarz-type theory.

3. DIMENSIONAL REDUCTION

In this section, the dimensional reduction of the Abelian and non-Abelian

Seiberg±Witten monopole equations is presented. For mathematical progress

on Seiberg±Witten monopoles, see Akbulut (1995) and Donaldson (1996)

for the Abelian case and Bradlow and Garcia-Prada (1996) for the non-
Abelian case.

First, let us recall the Seiberg±Witten monopole equations in four dimen-

sions. We assume that X has Spin structure. Then there exist rank-two positive

and negative spinor bundles S 6 . For Abelian gauge theory, we introduce a
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complex line bundle L and a connection A m on L. The Weyl spinor M (M )

is a section of S + ^ L (S + ^ L 2 1), hence M satisfies the positive chirality

condition g 5M 5 M. If X does not have Spin structure, we introduce Spinc

structure and Spinc bundles S 6 ^ L, where L2 is a line bundle. In this case,

M should be interpreted as a section of S + ^ L. Below, we assume Spin

structure. The reader interested in the physical implications of Spin and Spinc

structures should refer to the excellent review by Thompson (1995) and

references therein.

The Abelian Seiberg±Witten monopole equations (Witten, 1994a) in
four dimensions are the set of following differential equations:

F 1
m n 1

i

2
M s m n M 5 0

i g m D m M 5 0 (3.1)

where F 1
m n is the self-dual part of the U(1) curvature tensor

F m n 5 - m A n 2 - n A m

F 1
m n 5 P 1

m n r s F r s (3.2)

and P 1
m n r s is the self-dual projector defined by

P 1
m n r s 5

1

2 1 d m r d n s 1
! g

2
e m n r s 2 (3.3)

Note that the second term in the first equation of (3.1) is also self-dual

(Thompson, 1995). On the other hand, the second equation in (3.1) is a

twisted Dirac equation whose covariant derivative D m is given by

D m 5 - m 1 v m 2 iA m (3.4)

where

v m 5
1

4
v a b

m [ g a , g b ] (3.5)

is the spin connection 1-form on X.

In order to perform a reduction to three dimensions, let us first assume
that X is a product manifold of the form X 5 Y 3 [0, 1], where Y is a three-

dimensional compact manifold which has Spin structure. We may identify t
P [0, 1] as a ª timeº variable, or we assume t as the zeroth coordinate of X,

whereas xi (i 5 1, 2, 3) are the coordinates on (space manifold) Y. Then the

metric is given by
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ds2 5 dt2 1 gij dx i dx j (3.6)

The dimensional reduction proceeds by assuming that all fields are indepen-

dent of t. Below, we suppress the volume factor ! g of Y for simplicity.
First, let us consider the Dirac equation. After the dimensional reduction,

the Dirac equation becomes

g iDi M 2 i g 0A0 M 5 0 (3.7)

As for the first monopole equation, using (3.2), we find that

Fi0 1
1

2
e i0 jkFi0 F jk 5 2 iM s i0 M

Fij 1 e ijk0 F k0 5 2 iM s ij M (3.8)

Since the above two equations are dual to each other, the first one, for

instance, can be reduced to the second one by a contraction with the totally
antisymmetric tensor. Thus it is sufficient to consider one of them. Here, we

take the first equation in (3.8).

After the dimensional reduction, (3.8) becomes

- i A0 2
1

2
e ijk F jk 5 2 iM s i0 M (3.9)

where we have set e ijk [ e 0ijk .

Therefore, the three-dimensional versions of the Seiberg±Witten equa-

tions are given by

- ib 2
1

2
e ijk F jk 1 iM s i0 M 5 0

i( g iDi 2 i g 0b)M 5 0 (3.10)

where b [ A0. The factor i of the Dirac equation is for later convenience.
It is now easy to establish the non-Abelian 3D monopole equations [for

the four-dimensional version, see Labastida (1995), Labastida and MarinÄ o,

(1995b, c), Hyun et al. (1995a, b)] as

- ib
a 1 fabc Ab

i b
c 2

1

2
e ijk F ajk 1 iM s i0T

aM 5 0

i( g iD i 2 i g 0b)M 5 0 (3.11)

where we have abbreviated M s m n T
aM [ M i s m n (T

a)ij M
j, subscripts to (T a)ij

run 1 to dim g, and ba [ Aa
0.
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Next, let us find the action which produces (3.10). We can easily find

that the simplest one is given by

S 5
1

2 # Y F 1 - ib 2
1

2
e ijk F jk 1 iM s i0 M 2

2

1 ) i( g iDi 2 i g 0b)M ) 2 G d 3x (3.12)

Note that the minimum of (3.12) is given by (3.10). In this sense, the 3D

monopole equations are not equations of motion, but constraints. Furthermore,

there is a constraint for b. To see this, let us rewrite (3.12) as

S 5 # Y

d 3x F 1

2 1 12 e ijk F jk 2 iM s i0 M 2
2

1
1

2
) g iDi M ) 2 1

1

4
( - ib)2 1

1

2
b2 ) M ) 2 G (3.13)

The minimum of this action is clear given by the 3D monopole equations

with b 5 0 for nontrivial Ai and M. However, for trivial Ai and M, we may

relax the condition b 5 0 to - ib 5 0, i.e., b is (in general) a nonzero constant.

This can be also seen from (3.9). Accordingly, we obtain

1

2
e ijk F jk 2 iM s i0 M 5 0

i g iD i M 5 0

b 5 0 or - ib 5 0 (3.14)

as an equivalent to (3.10), but we will use (3.10) for convenience. The

Gaussian action will be used in the next section in order to construct a

topological field theory by the Batalin±Vilkovisky quantization algorithm.

The non-Abelian version of (3.12) and (3.14) would be obvious.
There is another action which can produce (3.14) as equations of motion.

It is given by a Chern±Simons action coupled with matter (Kronheimer and

Mrowka, 1994; Donaldson, 1996; Carey et al., 1997), which is analogous to

the action in massive gauge theory (Deser et al., 1982), but we do not discuss

the quantum field theory of this Chern±Simons action.

4. TOPOLOGICAL FIELD THEORIES OF 3D MONOPOLES

In this section, we construct topological field theories associated with

the Abelian and non-Abelian 3D monopoles, using the Batalin±Vilkovisky

quantization algorithm.
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4.1. Abelian Case

A three-dimensional action for the Abelian 3D monopoles was found

by the direct dimensional reduction of the four-dimensional one (Olsen, 1996;
Carey et al., 1997), but we show that the three-dimensional topological action

can be also directly constructed from the 3D monopole equations.

4.1.1. Topological Action

A topological Bogomol’ nyi action was constructed by using the Batalin±

Vilkovisky quantization algorithm (Birmingham et al., 1989) [a similar con-

struction can be found in a two-dimensional version (Schaposnik and

Thompson, 1989)] or by the quantization of magnetic charge (Baulieu and
Grossman, 1988). The former is based on the quantization of a certain

Langevin equation (ª Bogomol’ nyi monopole equationº ) and the classical

action is quadratic, but the latter is based on the ª quantizationº of the pure

topological invariant by using the Bogomol’ nyi monopole equation as a

gauge-fixing condition.

In order to compare the action to be constructed with those of Bogo-
mol’ nyi monopoles (Baulieu and Grossman, 1988; Birmingham et al., 1989),

we use the Batalin±Vilkovisky procedure. The reader unfamiliar with this

construction may consult Batalin and Vilkovisky (1981, 1983, 1985), Labas-

tida and Pernici (1988), Schaposnik and Thompson (1989), Birmingham et
al. (1989, 1991), Gomis et al. (1995), and Hodges and Mohammedi (1996).

In order to obtain the topological action associated with 3D monopoles,
we introduce random Gaussian fields Gi and n ( n ) and then start with the action

Sc 5
1

2 # Y F 1 Gi 2 - ib 1
1

2
e ijk F jk 2 iM s i0 M 2

2

1 ) ( n 2 i g iDi M 2 g 0bM ) ) 2 G d 3x (4.1)

Note that G i and n ( n ) are also regarded as auxiliary fields. This action

reduces to (3.12) in the gauge

Gi 5 0, n 5 0 (4.2)

First, note that (4.1) is invariant under the topological gauge

transformation

d Ai 5 - i u 1 e i

d b 5 t

d M 5 i u M 1 w
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d Gi 5 - i t 2 e ijk- j e k 1 i( w s i0 M 1 M s i0 w )

d n 5 i u n 1 g i e i M 1 i g iDi w 1 g 0b w 1 g 0 t M (4.3)

where u is the parameter of gauge transformation, e i and t [ e 4 are parameters

which represent the topological shifts, and w is the shift on the spinor space.
Brackets for indices mean antisymmetrization, i.e.,

A[i Bj ] 5 Ai Bj 2 Aj Bi (4.4)

Let us classify the gauge algebra (4.3). This is necessary in order to use

the Batalin±Vilkovisky algorithm. Let us recall that the local symmetry for

fields f i can be written generally in the form

d f i 5 Ri
a ( f ) e a (4.5)

where the indices represent the label of the fields and e a is a local parameter.

When d f i 5 0 for nonzero e a , this symmetry is called first-stage-reducible.

In the reducible theory, we can find zero-eigenvectors Z a
a satisfying Ri

a Z a
a 5

0. Moreover, when the theory is on-shell-reducible, we can find such eigenvec-

tors by using equations of motion.

For the case at hand, under the identifications

u 5 L , e i 5 2 - i L , w 5 2 i L M (4.6)

and

t 5 0 (4.7)

(4.3) becomes

d A i 5 0

d b 5 0

d M 5 0

d G i 5 0

d n 5 i L ( n 2 i g iDi M 2 g 0bM ) ) on-shell 5 0 (4.8)

Then for d Ai, for example, the R coefficients and the zero-eigenvectors are
derived from

d Ai 5 RAi
u Z u

L 1 RAi
e j Z

e j
L 5 0 (4.9)

that is,

RAi
u 5 - i, RAi

e j 5 d ij , Z u
L 5 1, Z

e j
L 5 2 - j (4.10)

Of course, similar relations hold for other fields.
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If we carry out BRST quantization via the Faddeev±Popov procedure

in this situation, the Faddeev±Popov determinant will have zero modes.

Therefore in order to fix the gauge further, we need a ghost for ghost. This
reflects on the second-generation gauge invariance (4.8) realized on-shell.

However, since b is irrelevant to L , the ghost for t will not couple to the

second-generation ghost. With this in mind, we use the Batalin±Vilkovisky

algorithm in order to make the BRST quantization.

Let us assign new ghosts carrying opposite statistics to the local parame-

ters. The assortment is given by

u ® c, e i ® c i, t ® j , w ® N (4.11)

and

L ® f (4.12)

Ghosts in (4.11) are first-generation, in particular, c is a Faddeev±Popov

ghost, whereas f is a second-generation ghost. Their Grassmann parity and

ghost number (U number) are given by

c c i j N f

1 2 1 2 1 2 1 2 2+
(4.13)

where the superscript on the ghost number denotes the Grassmann parity.
Note that the ghost number counts the degree of the differential form on the

moduli space } of the solution to the 3D monopole equations. The minimal

set F min of fields consists of

Ai b M Gi n

0+ 0+ 0+ 0+ 0+
(4.14)

and (4.13).

On the other hand, the set of antifields F *min carrying opposite statistics
to F min is given by

A*i b* M * G*i n * c* c *i N* f *

2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2+ 2 2+ 2 2+ 2 3 2
(4.15)

The next step is to find a solution to the master equation with F min and
F *min, given by

- rS

- F A

- l S

- F *A
2

- r S

- F *A

- l S

- F A 5 0 (4.16)

where r (l) denotes the right (left) derivative.
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The general solution for the first-stage-reducible theory at hand can be

expressed by

S 5 Sc 1 F *i Ri
a C a

1 1 C*1 a (Z a
b C b

2 1 T a
b g C

g
1C b

1)

1 C*2 g A g
b a C a

1C b
2 1 F *i F *j B ji

a C a
2 1 ? ? ? (4.17)

where C a
1 (C a

2) denotes generally the first- (second-) generation ghost and

only relevant terms in our case are shown. We often use F A
min 5 ( f i, C a

1 ,

C b
2 ), where f i denote generally the fields. In this expression, the indices

should be interpreted as the label of the fields, and are not to be confused

with space-time indices. The coefficients Z a
b , T a

b g , etc., can be directly deter-

mined from the master equation. In fact, it is known that these coefficients
satisfy the following relations

Ri
a Z a

b C b
2 2 2

- r Sc

- f j B ji
a C a

2 ( 2 1) | i | 5 0

- rR
i
a C a

1

- f j R j
b C b

1 1 R i
a T a

b g C
g
1C

b
1 5 0

- r Z
a
b C b

2

- f j R j
g C

g
1 1 2T a

b g C
g
1 Z b

d C d
2 1 Z a

b A b
d g C

g
1C

d
2 5 0 (4.18)

where ) i ) means the Grassmann parity of the i th field.
In these expansion coefficients, Ri

a and Z a
b are related to the local symme-

try (4.3). On the other hand, as T a
b g is related to the structure constant of a

given Lie algebra for a gauge theory, it is generally called a structure function.

Of course, if the theory is Abelian, such a structure function does not appear.

However, for a theory coupled with matter, all of the structure functions do

not always vanish, even if the gauge group is Abelian. At first sight, this
seems to be strange, but the expansion (4.17) obviously detects the coupling

of matter fields and ghosts. In fact, the appearance of this type of structure

function is required in order for the constructed action to be full BRST-

invariant.

After some algebra, we will find the solution to be

S( F min, F *min) 5 Sc 1 # Y

D S d 3x (4.19)

where

D S 5 A*i ( - ic 1 c i) 1 b* j 1 M *(icM 1 N ) 1 M *( 2 icM 1 N )

1 G*i [ - i j 2 e ijk - j c k 1 i(N s i0M 1 M s i0N )]
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1 n *(ic n 1 i g iDi N 1 g i c i M 1 g 0bN 1 g 0 j M )

1 n *(ic n 1 i g iDi N 1 g i c i M 1 g 0bN 1 g 0 j M )

1 c* f 2 c *i - i f 2 iN *( f M 1 cN ) 1 iN*( f M 1 cN )

1 2i n * n * f (4.20)

We augment F min by new fields x i, di, m ( m ), z ( z ), l , r , h , e, and

the corresponding antifields. Their ghost number and Grassmann parity are
given by

x i di m z l r h e

2 1 2 0+ 2 1 2 0+ 2 2+ 2 1 2 2 1 2 0+
(4.21)

and

x *i m * l * r *

0+ 0+ 1 2 0+
(4.22)

Then we look for the solution

S8 5 S( F min, F *min) 1 # Y

( x *idi 1 m * z 1 m * z 1 r *e 1 l * h ) d 3x (4.23)

where di, z , e, h are Lagrange multiplier fields.
In order to obtain the quantum action, we must fix the gauge. After a

little thought, the best choice for the gauge-fixing condition which can repro-

duce the action obtained from the dimensional reduction of the four-dimen-

sional one is found to be

Gi 5 0

n 5 0

- iAi 5 0

2 - i c i 1
i

2
(NM 2 MN ) 5 0 (4.24)

Thus we can obtain the gauge fermion carrying the ghost number 2 1
and odd Grassmann parity,

C 5 2 x iGi 2 m n 2 m n 1 r - iAi

2 l F 2 - i c i 1
i

2
(NM 2 MN ) G (4.25)
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The quantum action Sq can be obtained by eliminating antifields restricted

to lie on the gauge surface

F * 5
- rC

- F
(4.26)

Therefore the antifields will be

G*i 5 2 x i, x *i 5 2 Gi, n * 5 2 m ,

n * 5 2 m , m * 5 2 n , m * 5 2 n

M * 5 2
i

2
l N, M * 5

i

2
l N, N* 5

i

2
l M, N* 5 2

i

2
l M

r * 5 - iAi, A*i 5 2 - i r , c *i 5 2 - i l

l * 5 2 F 2 - i c i 1
i

2
(NM 2 MN ) G ,

c* 5 f * 5 b* 5 z * ( z *) 5 0 (4.27)

Then the quantum action Sq is given by

Sq 5 S8( F , F * 5 - rC / - F ) (4.28)

Substituting (4.27) into (4.28), we find that

Sq 5 Sc 1 # Y

D Ä S d 3x (4.29)

where

D Ä S 5 ( 2 D f 1 f MM 2 iNN ) l 2 F 2 - i c i 1
i

2
(NM 2 MN ) G h

2 m (ic n 1 i g iDi N 1 g i c i M 1 g 0bN 1 g 0 j M )

1 (ic n 1 i g iDi N 1 g i c i M 1 g 0bN 1 g 0 j M ) m 1 2i f m m

2 x i[ - i j 2 e ijk- j c k 1 i(N s i0 M 1 M s i0 N )]

1 r ( D c 1 - i c i) 2 d iG i 2 z n 2 n z 1 e - iAi (4.30)

Using the condition (4.2) with c 5 0, we arrive at

S8q 5 Sc ) Gi 5 n ( n ) 5 0 1 # Y

D Ä S ) c 5 0 d 3x (4.31)
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where

D Ä S ) c 5 0 5 ( 2 D f 1 f MM 2 iNN ) l 2 F 2 - i c i 1
i

2
(NM 2 MN ) G h

2 m (i g iD iN 1 g i c iM 1 g 0bN 1 g 0 j M )

1 (i g iD iN 1 g i c iM 1 g 0bN 1 g 0 j M ) m 1 2i f m m

2 x i[ - i j 2 e ijk- j c k 1 i(N s i0 M 1 M s i0 N )]

1 r - i c i 1 e - iAi (4.32)

It is easy to find that (4.31) is consistent with the action found by the
dimensional reduction of the four-dimensional topological action (Carey et
al., 1997).

4.1.2. BRST Transformation

The Batalin±Vilkovisky algorithm also facilitates the construction of

the BRST transformation rule. The BRST transformation rule for a field F
is defined by

d B F 5 e
- rS8

- F * Z F * 5 - r C / - F

(4.33)

where e is a constant Grassmann odd parameter. With this definition for

(4.30), we obtain

d B Ai 5 2 e ( - ic 1 c i)

d Bb 5 2 e j

d B M 5 2 e (icM 1 N )

d BG i 5 2 e [ - i j 2 e ijk - j c k 1 i(N s i0 M 1 M s i0 N )]

d B n 5 2 e (ic n 1 i g iD iN 1 g i c iM 1 g 0bN 1 g 0 j M 2 i m f )

d Bc 5 e f

d B c i 5 2 e - i f

d B r 5 e e

d B l 5 2 e h

d B m 5 e z

d B N 5 2 i e ( f M 1 cN )
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d B x i 5 e di

d B f 5 d B j 5 d Bdi 5 d Be 5 d B z 5 d B h 5 0 (4.34)

It is clear at this stage that (4.34) has on-shell nilpotency, i.e., the quantum
equation of motion for n must be used in order to have d 2

B 5 0. This is due

to the fact that the gauge algebra has on-shell reducibility. Accordingly, the

Batalin±Vilkovisky algorithm gives a BRST-invariant action and on-shell

nilpotent BRST transformation. Note that the equations

- i j 2 e ijk - j c k 1 i(N s i0 M 1 M s i0 N ) 5 0

i g iD iN 1 g i c i M 1 g 0bN 1 g 0 j M 5 0 (4.35)

can be recognized as linearizations of the 3D monopole equations, and the

number of linearly independent solutions gives the dimension of }.

It is now easy to show that the global supersymmetry can be recovered

from (4.34). In Witten-type theory, QB can be interpreted as a supersymmetric

BRST charge. We define the supersymmetry transformation as

d S F : 5 d B F ) c 5 0 (4.36)

We can easily find that the result is consistent with the supersymmetry algebra
of Carey et al. (1997).

4.1.3. Off-Shell Action

As was mentioned before, the quantum action of Witten-type topological
field theory can be represented by a BRST commutator with nilpotent BRST

charge QB. However, since our BRST transformation rule is on-shell nilpotent,

we should integrate out n and G i in order to obtain the off-shell BRST

transformation and off-shell quantum action.

For this purpose, let us consider the following terms in (4.30):

1

2
(G i 2 Xi)

2 1
1

2
) n 2 A ) 2 2 i m c n 1 ic n m 2 z n 2 n z (4.37)

2 d iG i

where

X i 5 - ib 2
1

2
e ijkF

jk 1 iM s i0 M, A 5 i g iDi M 1 g 0bM (4.38)

Here, let us define

n 8 5 n 2 A, B 5 2 ic m 2 z (4.39)
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n 8 ( n 8) and Gi can be integrated out and then (4.37) becomes

2
1

2
did

i 2 diX
i 2 2 ) B ) 2 1 BA 1 BA (4.40)

Consequently, we obtain the off-shell quantum action

Sq 5 {Q, C
Ä
} (4.41)

where

C
Ä

5 2 x i 1 Xi 1
a
2

di 2 2 m (i g iDi M 1 g 0bM 2 b B)

2 m (i g iD iM 1 g 0bM 2 b B)

1 r - iA i 2 l F 2 - i c i 1
i

2
(NM 2 MN ) G (4.42)

a and b are arbitrary gauge-fixing parameters. A convenient choice for them

is a 5 b 5 1. The BRST transformation rule for Xi and B fields can be
easily obtained, although we do not write it down here.

4.1.4. Observables

We can now discuss the observables. For this purpose, let us define

(Baulieu and Grossman, 1988)

! 5 A 1 c

^ 5 F 1 c 2 f

_ 5 db 1 j (4.43)

where we have introduced differential form notations, but their meanings

should be obvious. A and c are considered as the (1, 0) and (0, 1) parts of
the 1-form on (Y, }). Similarly, F, c , and f are the (2, 0), (1, 1), and (0, 2)

parts of the 2-form ^, and db and j are the (1, 0) and (0, 1) parts of the 1-

form _. Thus ! defines a connection 1-form on (Y, }) and ^ is a curvature

2-form. Note that the exterior derivative d maps any ( p1, p2)-form Xp of total

degree p 5 p1 1 p2 to a (p1 1 1, p2)-form, but d B maps any ( p1, p2)-form
to a (p1, p2 1 1)-form. Also note that

Xp Xq 5 ( 2 1) pqXq Xp (4.44)
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Then the action of d B is

(d 1 d B)! 5 ^

(d 1 d B)b 5 _ (4.45)

^ and _ also satisfy

(d 1 d B)^ 5 0

(d 1 d B)_ 5 0 (4.46)

Equations (4.46) can be interpreted as Bianchi identities in Abelian theory.

Equations (4.45) and (4.46) represent the anticommuting property between
the BRST variation d B and the exterior differential d, i.e., { d B, d} 5 0.

The BRST transformation rule in the geometric sector can be easily

read off form (4.34), i.e., d B A, d B c , d Bc, and d B f . Equations (4.46) imply

(d 1 d B)^n 5 0 (4.47)

and expanding the above expression by ghost number and form degree, we

obtain the following (i, 2n 2 i)-form Wn,i :

Wn,0 5
f n

n!

Wn,1 5
f n 2 1

(n 2 1)!
c

Wn,2 5
f n 2 2

2(n 2 2)!
C Ù c 2

f n 2 1

(n 2 1)!
F

Wn,3 5
f n 2 3

6(n 2 3)!
c Ù c Ù c 2

f n 2 2

(n 2 2)!
F Ù c (4.48)

where

0 5 d BWn,0

dWn,0 5 d BWn,1

dWn,1 5 d BWn,2

dWn,2 5 d BWn,3

dWn,3 5 0 (4.49)

Picking a certain k-cycle g as a representative and defining the integral

Wn,k( g ) 5 # g

Wn,k (4.50)
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we can easily prove

d BWn,k( g ) 5 2 # g

dWn,k 2 1

5 2 # - g

Wn,k 2 1

5 0 (4.51)

as a consequence of (4.49). Note that the last equality follows from the fact

that the cycle g is a simplex without boundary, i.e., - g 5 0. Therefore,

Wn,k( g ) indeed gives a topological invariant associated with the n th Chern

class on Y 3 }.
On the other hand, since we have a scalar field b and its ghosts, we

may construct topological observables associated with them. Therefore, the

observables can be obtained from the ghost expansion of

(d 1 d B)^n Ù _m 5 0 (4.52)

Explicitly, for m 5 1, for example, we obtain

0 5 d BWn,1,0

dWn,1,0 5 d BWn,1,1

dWn,1,1 5 d BWn,1,2

dWn,1,2 5 d BWn,1,3

dWn,1,3 5 0 (4.53)

where

Wn,1,0 5
f n

n!
j

Wn,1,1 5
f n 2 1

(n 2 1)!
c j 2

f n

n!
db

Wn,1,2 5
f n 2 2

2(n 2 2)!
c Ù c j 2

f n 2 1

(n 2 1)!
F j 2

f n 2 1

(n 2 1)!
c Ù db

Wn,1,3 5
f n 2 3

6(n 2 3)!
c Ù c Ù c j 1

f n 2 1

(n 2 1)!
F Ù db

1
f n 2 2

2(n 2 2)!
(2 c Ù F j 1 c Ù c Ù db) (4.54)
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These correspond to the cocycles (Baulieu and Grossman, 1988) in the

U(1) case.

Next, let us look for the observables for the matter sector. The BRST
transformation rules in this sector are given by d BM, d B N, d Bc, and d B f . At

first sight, the matter sector does not have any observable, but we can find

that the combined form

WÄ 5 i f MM 1 NN (4.55)

is an observable. However, unfortunately, as WÄ is cohomologically trivial

because d BWÄ 5 0, then dWÄ Þ d BWÄ 8 for some WÄ 8. Accordingly, WÄ does not

give any new topological invariant. Hyun et al. (1995a, b) identified WÄ as a
part of the bare mass term of the hypermultiplet in their twisting construction

of topological QCD in four dimensions.

In topological Bogomol’ nyi theory, there is a sequence of observables

associated with a magnetic charge. For the Abelian case, it is given by

W 5 # Y

F Ù db (4.56)

As is pointed out for the case of Bogomol’ nyi monopoles (Birmingham et
al., 1989), we cannot obtain the observables related to this magnetic charge
by the action of d B as well, but we can construct those observables by the

anti-BRST variation d B which maps an (m, n)-form to an (m, m 2 1)-form.

d B can be obtained by a discrete symmetry which is realized as ª time reversal

symmetryº in four dimensions. In our three-dimensional theory, the discrete

symmetry is given by

f ® 2 l , l ® 2 f , N ® i ! 2 m , m ®
i

! 2
N

c i ®
x i

! 2
, x i ® ! 2 c i, h ® ! 2 j , j ® 2

h

! 2
(4.57)

with

b ® 2 b (4.58)

(4.58) is an additional symmetry (Birmingham et al., 1989). Note that we

must also change N and m (and their conjugates). The positive chirality

condition for M should be used to check the invariance of the action. In this
way, we can obtain the anti-BRST transformation rule by substituting (4.57)

and (4.58) into (4.34) and then we can obtain the observables associated

with the magnetic charge by using the action of this anti-BRST variation

(Birmingham et al., 1989).
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The topological observables available in this theory are the same as

those of the topological Bogomol’ nyi monopoles.

Finally, let us briefly comment on our three-dimensional theory. First
note that the Lagrangian L and the Hamiltonian H in dimensional reduction

can be considered as equivalent. This is because the relation between them

is defined by

H 5 pqÇ 2 L (4.59)

where q is any field, the overdot means time derivative, and p is the canonical

conjugate momentum of q, and the dimensional reduction requires the time

independence of all fields, thus H 5 2 L in this sense. Though we have

constructed the three-dimensional action directly from the 3D monopole

equations, our action may be interpreted essentially as the Hamiltonian of
the four-dimensional Seiberg±Witten theory. In this sense (Witten, 1988),

the ground states may correspond to the ª Floer groups?º of Y, but we do not

know the precise correspondence.

4.2. Non-Abelian Case

It is easy to extend the results obtained in the previous subsection to

the non-Abelian case. In this subsection, we summarize the results for the

non-Abelian 3D monopoles.

4.2.1. Non-Abelian Topological Action

With the auxiliary fields Ga
m n and n , we consider

Sc 5
1

2 # Y

d 3x [(Ga
i 2 K a

i )
2 1 ) n 2 i g iDi M 2 g 0bM ) 2] (4.60)

where

K a
i 5 - ib

a 1 fabc Ab
i b

c 2
1

2
e ijkF

a
jk 1 iM s i0 T aM (4.61)

Note that the minimum of (4.60) with the gauge

Ga
i 5 n 5 0 (4.62)

is given by the non-Abelian 3D monopoles. We take the generator of the Lie

algebra in the fundamental representation, e.g., for SU(n),

(Ta)ij (T
a)kl 5 d il d jk 2

1

n
d ij d kl (4.63)

Extension to other Lie algebras and representations is straightforward.
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The gauge transformation rule for (4.60) is given by

d Aa
i 5 - i u a 1 fabc Ab

i u c 1 e a
i

d ba 5 fabcb
b u c 1 t a

d M 5 i u M 1 w

d Ga
i 5 fabcG

b
i u c 1 [ 2 e ijk( - j e ak 1 fabc e jbAck)

1 - i t a 1 fabc( e b
i b

c 2 t bAc
i ) 1 i( w s i0T

aM 1 M s i0T
a w )]

d n 5 i g iD i w 1 g i e i M 1 g 0b w 1 g 0 t M 1 i u n (4.64)

Note that we have a Ga
i term in the transformation of Ga

i , while it did not

appear in Abelian theory.

The gauge algebra (4.64) possesses on-shell zero modes as in the Abelian

case. Setting

u a 5 L a, e a
i 5 2 - i L a 2 fabc Ab

i L c, t a 5 2 fabcb
b L c, w 5 2 i L M

(4.65)

we can easily find that (4.64) closes

d Aa
i 5 0

d ba 5 0

d M 5 0

d Ga
i 5 fabc L c[Gb

i 2 K b
i ] ) on-shell 5 0

d n 5 i L [ n 2 i( g iDi 2 i g 0b)M ] ) on-shell 5 0 (4.66)

when the equations of motion of Ga
i and n are used. Note that we must use

equations of motion of both Ga
i and n in the non-Abelian case, while only

ª n º was needed for the Abelian theory. Furthermore, as w is a parameter in

the spinor space, w is not g-valued, in other words, w Þ w aTa. Equations
(4.64) are first-stage-reducible.

The assortment of ghost fields, the minimal set F min of the fields and

the ghost number and the Grassmann parity, and those for F *min would be

obvious.

Then the solution to the master equation is

S( F min, F *min) 5 Sc 1 # Y

tr D Sn d 3x (4.67)
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where

D Sn 5 A*i (Dic 1 c i) 1 b*(i[b, c] 1 j )

1 M *(icM 1 N ) 1 M *( 2 icM 1 N )

1 G*
i

GÄ i 2 iN *( f M 1 cN ) 1 iN*( f M 1 cN )

1 n *(ic n 1 i g iD iN 1 g i c iM 1 g 0bN 1 g 0 j M )

1 n *(ic n 1 i g iD iN 1 g i c iM 1 g 0bN 1 g 0 j M )

1 2i n * n * f 1 c *i ( 2 Di f 2 i{ c i, c})

1 c* 1 f 2
i

2
{c, c} 2 2 i f *[ f , c] (4.68)

2
i

2
{G*i , G*i} f 1 i j *([b, f ] 2 { j , c})

Here

GÄ
i 5 i[c, G i] 2 e ijk D j c k 1 Di j 1 [ c i, j ]

1 i(N s i0TaT
aM 1 M s i0TaT

aN ) (4.69)

The equations

2 e ijkD
j c k 1 Di j 1 [ c i, j ] 1 i(N s i0TaT

aM 1 M s i0TaT
aN ) 5 0

i g iD iN 1 g i c iM 1 g 0bN 1 g 0 j M 5 0 (4.70)

can be seen as linearizations of non-Abelian 3D monopoles.

We augment F min by new fields x a
i , d a

i , m ( m ), z ( z ), l , r , h , e, and the
corresponding antifields, but Lagrange multiplier fields d a

i , z ( z ), e, and h
are assumed not to have antifields for simplicity, and therefore their BRST

transformation rules are set to zero. This simplification means that we do

not take into account BRST exact terms. In this sense, the result to be obtained

will correspond to those of the dimensionally reduced version of the four-

dimensional theory (Labastida and MarinÄ o, 1995b, c; Hyun et al., 1995a, b)
up to these terms, i.e., topological numbers.

From the gauge-fixing condition

Ga
i 5 0

n 5 0

- iAi 5 0

2 D i c i 1
i

2
(NM 2 MN ) 5 0 (4.71)
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the gauge fermion becomes

C 5 2 x iGi 2 m n 2 m n 1 r - iAi

2 l F 2 Di c i 1
i

2
(NM 2 MN ) G (4.72)

The antifields are then given by

G*i 5 2 x i, x *i 5 2 Gi, n * 5 2 m ,

n * 5 2 m , m * 5 2 n , m 5 2 n

M * 5 2
i

2
l N, M * 5

i

2
l N, N* 5

i

2
l M, N* 5 2

i

2
l M

r * 5 - iAi, A*i 5 2 - i r 1 i[ l , c i], c *i 5 2 D i l

l * 5 2 F 2 Di c i 1 [b, j ] 1
i

2
(NM 2 MN ) G (4.73)

b* 5 c* 5 j * 5 f * 5 z * ( z *) 5 0

Therefore we find the quantum action

Sq 5 Sc 1 # Y

tr D Ä Sn d 3x (4.74)

where

D Ä Sn 5 2 F 2 Di c i 1 [b, j ] 1
i

2
(NM 2 MN ) G h 2 l (Di D

i f 1 iDi{ c i, c})

1 i l { c i, Dic 1 c i} 1 ( f MM 2 iNN ) l

2 x i F i[c, Gi] 1 e ijk D j c k 1 Dk j 1 [ c k, j ]

1
i

2
(N s ijTaT

aM 1 M s ijTaT
aN ) G

2 m (i g m D m N 1 g m c m M 1 ic n ) 1 (i g iD iN 1 g m c m M 1 ic n ) m

1 2i f m m 2
i

2
{ x i, x i} f 1 r ( - i D

ic 1 - i c i)

2 d iGi 2 z n 2 n z 1 e - iAi (4.75)
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In this quantum action, setting

M (M ) 5 N (N ) 5 m ( m ) 5 n ( n ) 5 0 (4.76)

we can find that the resulting action coincides with that of Bogomol’ nyi

monopoles (Birmingham et al., 1989).
Finally, in order to obtain the off-shell quantum action, both auxiliary

fields should be integrated out by a similar technique to that presented in

the Abelian case, but we leave this as an exercise for the reader.

4.2.2. BRST Transformation

The BRST transformation rule is given by

d B Ai 5 2 e (Dic 1 c i)

d Bb 5 2 e (i[c, b] 1 j )

d B j 5 i e ([b, f ] 2 { j , c})

d B M 5 2 e (icM 1 N )

d BG i 5 2 e (GÄ
i 2 i[ x i, f ])

d B n 5 2 e (ic n 1 g m D m N 1 g m c m M 2 i m f )

d Bc 5 e 1 f 2
i

2
{c, c} 2

d B c i 5 2 e (Di f 1 i{ c i, c})

d B r 5 e e

d B l 5 2 e h

d B m 5 e z

d B N 5 2 i e ( f M 1 cN )

d B x i 5 e di

d B f 5 i e [ f , c]

d Bdi 5 d Be 5 d B z 5 d B h 5 0 (4.77)

It is easy to obtain supersymmetry also in this case. However, as we

have omitted the BRST exact terms, the supersymmetry in our constructin

does not detect them.
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4.2.3. Observables

We have already constructed the topological observables for the Abelian

case. In the non-Abelian case, the construction of observables is basically

the same, except that relations (4.45) and (4.46) are modified,

(d 1 d B)! 2
i

2
[!, !] 5 ^

(d 1 d B)b 2 i[!, b] 5 _ (4.78)

and

(d 1 d B)^ 2 i[!, ^] 5 0

(d 1 d B)_ 2 i[!, _] 5 i[^, b] (4.79)

respectively, where [ * , * ] is a graded commutator. The observables in the

geometric and matter sectors are the same as before, but we should replace

db by dAb in (4.54) as well as (4.78) and (4.79), where dA is the exterior

covariant derivative and trace is required. In addition, the magnetic charge
observables are again obtained by anti-BRST variation as outlined before.

The observables in the geometric sector are those in (4.48) and follow

the cohomology relation (4.49). In this way, the topological observables

available in this three-dimensional theory are precisely the Bogomol’ nyi

monopole cocycles (Baulieu and Grossman, 1988).

5. SUMMARY

We have discussed the existence of topological field theories which

describe the moduli space of Abelian and non-Abelian three-dimensional

Seiberg±Witten monopole equations, by using the Batalin±Vilkovisky quanti-

zation procedure. In the Abelian case, our topological action with a certain

gauge condition is found to be consistent with that of the dimensionally

reduced version of the four-dimensional one. We have also established the
three-dimensional non-Abelian action. The interesting point is that this non-

Abelian action can be viewed as the Bogomol’ nyi monopole topological

action including matter and its associated ghost. We have easily obtained

the BRST and anti-BRST transformation rules. The topological observables

related to the Chern classes can be found in standard fashion. We have found
that they are precisely the cocycles of Bogomol’ nyi monopole topological

field theory.

In this paper, we have not included the mass term for the Weyl spinor,

but the introduction of the mass term may connect the Bogomol’ nyi and the

3D Seiberg±Witten monopole topological field theory, as it was shown that
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the mass term interpolates Donaldson theory and Seiberg±Witten theory

in four dimensions (Hyun et al., 1995a, b). This point of view should be

further studied.
While there has been progress on the self-dual Yang±Mills equations,

several tasks remain for the Seiberg±Witten equations, so let us briefly

comment on them as open problems.

1. Integrability of Seiberg ± Witten equations. As is well known, the self-

dual Yang±Mills equation can be reduced to certain solitonic equations such
as the nonlinear SchroÈ dinger equation or KdV equation after suitable choice

for the gauge fields (Mason and Sparling, 1992; Strachan, 1993), although

there is no proof that the self-dual Yang±Mills equation is indeed integrable.

On the other hand, as for the Seiberg±Witten equations, they cannot be viewed

as integrable equations at first sight, but it was found that the Seiberg±Witten

equations on R2 could be realized as Liouville vortex equations, which are
manifestly integrable (Nergiz and SacÎ lõ ogÄ lu, 1996) [as for a solution on R3,

there is Freund’ s solution (Freund, 1995)]. This fact seems to connect integ-

rable systems and Seiberg±Witten monopoles. Furthermore, as explicit solu-

tions to non-Abelian Seiberg±Witten equations have not been found, we

cannot pursue the integrability. For this direction, the twistor program (Pen-

rose and MacCallu, 1972) may be available, as is often used for the self-
dual Yang±Mills equation (Corrigan and Goddard, 1981; Ward, 1981; Mason

and Sparling, 1992).

2. Reduction to two-dimensional surfaces (Riemann surfaces S ). We

can dimensionally reduce the Seiberg±Witten equations onto two-dimensional

surfaces. As mentioned before, the operation of dimensional reduction con-
nects the theories between four and three, and three and two dimensions; the

two-dimensional theory may be regarded as a dual U(1) theory for the SU(2)

Hitchin equations (Hitchin, 1987) [usually, the Lie group for Hitchin equations

is taken to be SO(3) rather than SU(2)], i.e., two-dimensional Yang±Mills±

Higgs equations. One approach to study this observation is to construct

solutions to the Seiberg±Witten equations on Riemann surfaces and compare
their properties with those of the Hitchin equations. Recently, the reduced

Seiberg±Witten equations were studied and it was pointed out that the set

of equations had an extremely similar structure to the Hitchin equations,

except for the distinction of Higgs field and Weyl spinor (Martin and Restuc-

cia, 1997). We would like to interpret the relationship between these two

theories in the context of topological quantum field theory, but no progress
such as the study of the topological field theory associated with the two-

dimensional Seiberg±Witten monopoles has been made [a topological action

is obtained by a dimensional reduction (Olsen, 1996)], although Yang±Mills

theory on Riemann surfaces are well discussed (see e.g., Thompson, 1995,
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and references therein). We know that the Yang±Mills±Higgs theory in two

dimensions is closely related to a conformal field theory (Chapline and

Grossman, 1989), but is it true also in two-dimensional Seiberg±Witten
theory?

There are other problems, such as supersymmetric extension (Ader et
al., 1989; Ader and Grieres, 1990), twistor description (Volovich, 1983; Nair

and Schiff, 1989), and so on, but many (topological) field-theoretic techniques

to study these problems have been developed. Nevertheless, the Seiberg±

Witten theory does not seem to have been discussed even in four dimensions

as well as lower dimensions, in contrast with the Donaldson theory in the

context of topological quantum field theory. Filling the gap may be an attrac-
tive problem, but much effort will be required.

APPENDIX. CONVENTION FOR GAMMA MATRIX

The convention for the gamma matrix is as follows. Let s i be Pauli
matrices

s 1 5 1 0 1

1 0 2 , s 2 5 1 0 2 i

i 0 2 , s 3 5 1 1 0

0 2 1 2 (A.1)

On R4 we define four gamma matrices

g 0 5 1 0 I

I 0 2 , g j 5 1 0 i s j

2 i s j 0 2 (A.2)

and

g 5 5 g 0 g 1 g 2 g 3

5 1 I 0

0 2 I 2 (A.3)

where I is a 2 3 2 unit matrix.

As can be easily seen from (A.2), they satisfy

{ g m , g n } 5 2 d m n (A.4)

It is often useful to define

s m n 5
1

2
[ g m , g n ] (A.5)
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Then

s ij 5 i e ijk 1 s
k 0

0 s k 2 , s k0 5 i 1 s
k 0

0 2 s k 2 (A.6)

On curved manifolds, we multiply viervein to these gamma matrices
(except g 5). On Y 3 [0, 1], g 0 is a constant matrix, while the others are not

in general.
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